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Project Background 
Traffic crashes are key contributors to non-recurrent congestion. The Federal Highway Administration 

estimated that Traffic Incident Management (TIM) efforts in the USA are credited with reducing annual 

delay by 129.9 million hours with an associated cost savings of $2.5 billion (U.S. Department of 

Transportation. Federal Highway Administration, Dec 2008). Traffic incidents are frequent and life-

threatening to motorists and responders, particularly secondary crashes. A secondary crash is one which 

occurs at the tail end of a queue caused by an initial event, such as a crash or construction. Despite the 

fact that traffic crashes are heavy contributors to non-recurrent congestion, the interface between 

crashes, incidents, and congestion has not been fully explored in context with new data sources. 

Over the past few years, ALDOT has taken a transportation systems management and operations (TSMO) 

approach to manage intelligent transportation system (ITS) assets and monitor congestion across their 

road network. Regional Traffic Management Centers (RTMCs) have been established in four of the five 

regions to monitor data and information from a newly developed ALGO Traffic web interface. The ALGO 

Traffic platform provides real-time feeds for cameras, speed sensors, and other pieces of infrastructure. 

This platform and data are used by RTMC operators to monitor and log crashes and other various types 

of incidents (disabled vehicles, construction, queues, etc.). The University of Alabama (UA) through the 

Center for Advanced Public Safety (CAPS) has recently begun working on phase-II of the ALGO Traffic 

Platform, which will continue to add functionality for TMC operators. 

 

Figure 1 First Regional Traffic Management Center in West Central Region 
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Also, in an effort to monitor congestion, ALDOT currently purchases state-wide crowdsourced mobility 

data from HERE. These data are included in the ALGO Traffic Platform for real-time speed observation, 

and in Iteris iPeMS / ClearGuide. The data are also continuously collected and stored and can be used to 

generate performance metrics that provide a stronger quantitative assessment of mobility. These metrics 

will enable Alabama to meet compliance with a recent FHWA ruling that supports the Fixing America’s 

Surface Transportation (FAST) Act by measuring and assessing system performance (Federal Highway 

Administration, 2017). 

 

Figure 2 Iteris iPeMS dashboard showing example historical speed information 

To further leverage the benefits of both the ALGO Traffic incident data and the state-wide HERE data, 

these datasets have been synthesized together to understand factors affecting safety and congestion. 

Each incident has been collected and documented in the ALGO Traffic platform for quantification based 

on its impact to traffic flow using the crowdsourced mobility data. By looking at the incident type, location, 

response, and other variables, improvements to traffic safety and congestion can be considered. 

Organization of this Report 
Following the above background and introduction, the tasks of the project are reviewed in the next 

section. There are two main groups of tasks: (1) incident analysis and (2) dashboards for presenting the 

speed data. The second task group was conducted first to setup the data storage and retrieval processes. 

The data component for this project is very key and described after the tasks recap. After the data sources 

section, the dashboards are described, and a case study is shown for each. Finally, the incident analysis 

task group is discussed. The table of contents is a useful guide to follow each component.  
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Tasks for the Incident Analysis 
1. Gather Incident Data – Incident data was gathered from the Center for Advanced Public Safety’s 

(CAPS) Critical Analysis Reporting Environment (CARE). Also, other non-crash information that is 

stored by the Alabama Traffic Management Centers was collected. This was synthesized using 

modeling techniques. 

2. Generate Per-Incident Reports – Each crash and incident has been quantified based on the 

mobility impact. Every incident is available here (https://sdmh.aladata.com/) and will be 

discussed in this report. 

3. Summarize Per-Incident Reports – Again, all crashes and incidents have been quantified, and the 

results have been used to identify and summarize significant factors. 

4. Modeling of Mobility Impact from Incidents – The crash and incident data were analyzed using 

duration models to determine key factors based on the attributes listed in each report. This 

allowed multiple factors to be considered simultaneously, providing additional insight beyond 

single-factor analysis. 

5. Interpretation and Write-Up of Model Findings – The significant parameters are discussed at the 

end of this report (and fully discussed in attached white paper). 

Tasks for the Traffic Ticker and Delta Speed Map Dashboards 
6. Collecting TMC-level Shapefiles – Shapefiles for TMC segments were obtained and sanitized to 

include only mainline interstate segments. These were joined with other data to classify what 

ALDOT region and county each segment lies in. 

7. Downloading Existing Speed Data – The HERE bulk download interface was be used to download 

CSV files of historical speed data for the interstates. These data have been stored in a database 

that can be queried to provide the basis of the dashboards. 

8. Livestream of Speed Data – An automated service was developed to automatically download and 

import speed data into the database as it becomes available. 

9. Preliminary Dashboard Integration with ALGO Traffic and ALGO Reports – An interface based on 

the Traffic Ticker will be designed for Alabama and integrated into existing tools for ease of access 

(https://reports.algotraffic.com/dashboard). Information from ALGO Reports has been integrated 

with the Traffic Ticker view to streamline identification of the sources of congestion. 

10. Implement Live-Data Dashboard – The Traffic Ticker dashboard uses the data accessed by the 

livestream automated service, allowing it to display the most up-to-date information available to 

ALDOT (https://reports.algotraffic.com/here-charts). 

11. Prototype Incident Report Generation Tool – The integration of traffic and incident data now 

creates automated incident reports that can summarize delay, queuing, and other traffic factors 

for after-action review (https://sdmh.aladata.com/). 

  

https://sdmh.aladata.com/
https://reports.algotraffic.com/dashboard
https://reports.algotraffic.com/here-charts
https://sdmh.aladata.com/
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Data Sources 
The main sources of data for this project were speed data obtained from HERE and volume data obtained 

through Highway Performance Monitoring System (HPMS). This data was combined with crash data and 

TMC incident data for specific analyses. 

HERE Speed Data 
The speed data provided by HERE is reported every minute for stretches of road called Traffic Message 

Channels (TMCs), which can range in length from under a mile to several. These data are provided in a live 

XML feed (see Figure 3), which is downloaded and ingested into a database for use in reporting 

dashboards and other tools. These data are available from April 2018 onwards. 

 

Figure 3 Sample XML feed of live HERE data 
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Archive data are available in the iPeMS bulk data download back to 2017. These data are available as a GZ 

files for each day. A stored procedure was created for ingesting and storing this data. The fields and 

example download interface are shown in Figure 4. 

 

Figure 4 HERE Bulk Data Download 
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Speed Subsegments 

One very challenging aspect with the HERE data is the dynamic subsegment data. Historically, TMC 

segments have been the standard segment regime used for reporting aggregated speed information. 

Usually, TMCs span between nodes on road networks. In urban areas, the distance between nodes I 

usually reasonable (0.25 mile to 1 mile). In rural areas, these TMCs can span several miles. Trying to detect 

incidents over these longer distances is challenging and vague. 

To improve on this segmentation scheme, two different systems have been used: fixed subsegments and 

dynamic subsegments. With fixed subsegments, short (0.1 mile to 0.5 mile) segments are created to split 

TMCs into smaller stretches. For Alabama, there are approximately 10,000 TMC segments for the 

freeways. With fixed subsegments, this could be over 100,000 subsegments. Reporting for each 

subsegment produces a tremendous amount of information each minute. This is especially unnecessary 

when none of the fixed subsegments are significantly different from the parent TMC. With dynamics 

subsegments, TMCs can be split on-the-fly to report only portions of a TMC that vary significantly. This 

cuts down on the amount of data generated for each interval, but issues arise when each minute features 

a different segmentation. 

The ways that HERE spatially segments the data are shown in Figure 5. The main segment is the TMC, 

shown at the top. These are usually several miles long, often broken at interchanges with a short segment 

between the on and off ramp. The next level is the LinkID, which are very small segments, often only a 

few hundred feet, which are available in the shapefiles. The third is the dynamic subsegments. This is how 

sub-TMC speeds are represented in the data. They are only used when the speed on a subsegment is 

substantially different from the average of the whole TMC. They are assigned dynamically, and as the two 

examples show, can change minute to minute in both length and number. 

 

Figure 5 HERE Data Segmentation 

  



10 
 

Subsegments are made up of one or more LinkIDs, though they are not referred to in that manner in the 

XML document. They are instead defined by their offset from the beginning of the TMC and recorded in 

order with the flow of traffic. Therefore, the data for the segments in Figure 5 may look like Table 1, with 

the direction of travel being left-to-right. In this constructed example, the importance of subsegments can 

be seen in comparing the speed column, which is a weighted average for the TMC, with the subsegment 

speeds. 

Table 1 Subsegment Speed Example 

Timestamp TMC Speed Sub. Length Sub. Speed 

9:00 101+01559 61.5 0.6 65 

9:00 101+01559 61.5 0.5 45 

9:00 101+01560 65 0.3 45 

9:00 101+01560 65 1.5 25 

9:00 101+01560 65 0.2 70 

9:00 101+01561 70 NULL NULL 

9:01 101+01559 52 0.4 60 

9:01 101+01559 52 0.7 40 

9:01 101+01560 57 0.3 35 

9:01 101+01560 57 1.0 25 

9:01 101+01560 57 0.5 15 

9:01 101+01560 57 0.2 70 

9:01 101+01561 70 NULL NULL 
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Data Storage and Access 

The data are stored in a SQL database with an ingestion process that adds new data as it becomes 

available. This allows for the dashboard tools and other users to query data in real-time. The HERE bulk 

data was stored in a Microsoft SQL Server database for easy retrieval. The database stores several billion 

records and has grown to several terabytes. A sample of the data is shown in Figure 6. In Figure 6, there 

are three rows highlighted showing the dynamic subsegmentation. The main TMC (row 5) has a measured 

average speed of 34.44997 mph (see the “speed” column of row 5). However, the average is a poor 

representation of the conditions on this 0.8235736 mile segment (note: the unreasonable number of 

significant digits is used for the reader to be able to connect this narrative with the data shown in Figure 

6). The proprietary methods used by HERE split the TMC into two subsegments (row 6 and row 7). The 

first subsegment (row 6) is 0.5249348 miles long and has an average speed of 68.37166 mph. The 

following subsegment (row 7) is 0.3389435 miles long and has an average speed of 19.47172 mph. From 

this information, it would be reasonable to expect some anomaly at the 0.52 mile mark of this TMC. 

Additional information about this TMC (route, direction, etc.) would be available in another table to 

properly locate the specific location. 

 

Figure 6 SQL retrieval of HERE bulk data (highlighted rows showing dynamic subsegmentation) 
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HPMS Volume Data 
The Highway Performance Monitoring System (HPMS) data was used to attribute volumes for segments 

and analysis. Mostly, the annual average daily traffic was used as an independent variable in models. 

Shapefiles were used in GIS for the conflation process. 

RTMC Incident Data 
Another new dataset used in this project was the incident data logged by the RTMCs. For each incident 

that the RTMCs handle, detailed notes are included. These notes were combined with crash data and used 

for modeling and understanding impacts from the response. Approximately 7,000 incidents were included 

in the study. A sample dataset for three incidents is shown in Table 2. 

Table 2 Sample RTMC incident data 

EVENTID 48235 48312 48488 
EVENTTYPE Accident Accident Accident 

EVENTSUBTYPE Crash Crash Crash 
LASTSEVERITY 1 1 2 

LASTLANEPATTERN tzzzs tzzs tzzs 
CREATEDBY floydkb adamsl harrisg 
LATITUDE 32.367825 31.679459 31.58355 

LONGITUDE -86.121147 -86.754379 -86.839966 
MILEMARKER 12 116 107 

ROADTYPE Interstate Interstate Interstate 
PRIMARYROAD I-85 I-65 I-65 

CROSSROAD Exit 11: Atlanta Hwy Bolling Road Exit 107: CR 7; Hank Williams Rd 
DIRECTION N N N 

COUNTY Montgomery Butler Butler 
CITY Montgomery 

  

DISTRICT Montgomery Montgomery Montgomery 
DETECTIONMETHOD Operator-detected Operator-detected Operator-detected 

DATE 2018/01/02 08:40:00 2018/01/02 10:51:17 2018/01/02 15:34:19 
CREATEDDATE 1/2/18 8:40 AM 1/2/18 10:51 AM 1/2/18 3:34 PM 
VERIFIEDTIME 1/2/18 8:40 AM 1/2/18 10:51 AM 1/2/18 3:34 PM 

DISPATCHEDTIME 1/2/18 8:40 AM -- -- 
FIRSTRESPONDERTIME 1/2/18 9:00 AM -- -- 
ALLLANESOPENTIME 1/2/18 9:57 AM 1/2/18 11:32 AM 1/2/18 4:48 PM 

RESPONDERDEPARTTIME 1/2/18 9:57 AM 1/2/18 11:32 AM 1/2/18 4:56 PM 
NORMALFLOWTIME -- -- -- 
POLICEARRIVETIME 1/2/18 9:00 AM -- -- 
POLICEDEPARTTIME 1/2/18 9:57 AM -- -- 

AMBULANCEARRIVETIME -- -- -- 
AMBULANCEDEPARTTIME -- -- -- 

FIREARRIVETIME -- -- -- 
FIREDEPARTTIME -- -- -- 

HAZMATARRIVETIME -- -- -- 
HAZMATDEPARTTIME -- -- -- 
CORONERARRIVETIME -- -- -- 
CORONERDEPARTTIME -- -- -- 

TOWARRIVETIME -- -- -- 
TOWDEPARTTIME -- -- -- 
PROCESSEDTIME 4/10/19 10:29 AM 4/10/19 10:29 AM 4/10/19 10:29 AM 

AGENCY ALDOT ALDOT ALDOT 
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For reference, a sample of the RTMC incident data in the Advanced Traffic Management System (ATMS) 

is shown in Figure 7. The RTMC operators monitor each incident and note any key changes in incident 

status. 

 

Figure 7 Sample RTMC data as it's being handled in the ATMS 
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Data Conflation 
When working with multiple linear datasets (HERE dynamic subsegments, freeway mileposts, HPMS 

segments, etc.), combining these datasets in a logical manner to fully describe the road network is 

important. Ideally, and specific location on the road network (either a latitude/longitude point or a 

milepost and direction on a specific freeway) would have a full set of information, including route, 

direction, AADT, speed, geometry characteristics, and other pertinent information. One major problem is 

that each dataset usually has different break points. As an example, the TMC shapefile provided by HERE 

is shown with the HPMS volume shapefile in Figure 8. While both of these files chart the roads of Alabama, 

they do not directly match. 

 

Figure 8 Conflation example where two different linear systems feature different break points 
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To overcome the varying break points of each dataset and properly assemble the data for all freeways in 

Alabama, conflation of the multiple datasets was conducted. Conflation is a process developed at the 

Texas Transportation Institute at Texas A&M to join two maps such that data can be used from both. The 

conflation process is done in a GIS system such as ArcMap and is described in the steps below: 

1. Select one map as the “Join Map” and the other as the “Base Map.” We used the HPMS data set 

as the base map. 

2. Extract the segment endpoints from the Join Map 

3. Create a buffer around each of the endpoints 

4. Merge overlapping or adjacent points and extract the centroid to create a clean endpoint file 

5. Break the Base Map features at each endpoint 

6. Create a buffer around each Join Map segment 

7. Spatially join the Base Map links to the Join Map by giving each the attributes of the buffer polygon 

it falls completely inside. 

8. Repeat the process on unmatched links 

9. Merge all layers 

10. Perform quality control checks 

At the end of the process, the conflated segment is broken at both the TMC and HPMS endpoints, and so 

for a given segment of road both the speed and volume records may be retrieved. These data can be 

combined with a weighted average so that the volume of a TMC segment or the speed of an HPMS 

segment may be calculated. This allows for the calculation of more robust delay metrics that account for 

both speed and volume. The conflation process is challenging, particularly in the quality control step, and 

many lessons were learned along the way to adapt to continual changes with datasets. 
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Data Dashboards 
Dashboards are used to display the speed data in meaningful ways, allowing the user to select the areas 

or time periods of interest. These tools can be used for real-time monitoring of the road or after-action 

review. Already, the RTMCs have been using speed dashboards in their existing ATMS (Figure 9). 

 

Figure 9 West Central RTMC speed dashboard (upper right) in existing ATMS 

In the next sections, the development of two additional dashboards will be discussed. These dashboards 

will summarize and use the HERE speed data in new ways as described in the original proposal.  
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Traffic Ticker 
The traffic ticker dashboard displays the miles of roadway that are operating under a certain speed 

threshold (usually 45 mph). This dashboard is useful for looking at an entire state or region and breaking 

down speed records by facility, direction, and speed. The early prototype traffic ticker dashboard is shown 

in Figure 10. 

  

Figure 10 Prototype traffic ticker 

In this dashboard, a date is first selected. Usually a 24-hour period for a single day is most useful for 

reviewing the speed data and how the network was operating. Next, a speed threshold is set for when 

congestion is likely to have occurred. While 45 mph is the standard threshold, a lower value (e.g. 25 mph) 

would provide more certainty about congestion or anomalies happening. Recalling the speed records (see 

Table 1), when the median observations for a segment are under the threshold, then that segment length 

is included in the miles of congestion (miles affected in Figure 11 through Figure 15). These charts can be 

used daily to track freeways across the state and gauge how congestion is doing. Perhaps one of the most 

interesting uses will be for winter weather conditions. In the next section, a case study is shown for a 

special event traffic scenario. 
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Case Study – The University of Alabama vs Louisiana State University (11/9/19) 

To demonstrate the final traffic ticker product, November 9, 2019 will be used as a case study. This 

Saturday was a special event football game at the University of Alabama. In Figure 11, the traffic ticker is 

used to show all freeways in Alabama across all regions. The worst time of the day was 20:15 when over 

30 miles of freeway was below the congestion speed threshold of 45 mph. Note that the colors in this 

graph represent different speed intervals below the congestion level. 

 

Figure 11 Traffic ticker (all freeways, all regions, varying congestion thresholds by speed) 
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In Figure 12, the data is divided by region. East Central Region had a steady portion (approximately 3 

miles) of freeway that remained below 45 mph due to the Central Business District project. More to the 

point of the case study, West Central Region had congestion conditions during the AM period from 8:30-

11:45 and the PM period from 18:00-22:30. 

 

Figure 12 Traffic ticker (all freeways, grouped by region, congestion threshold set at 45 mph) 

Selecting just the West Central Region, these two periods are very clearly shown in Figure 13. This 

information is very useful to the West Central Region, the RTMC, and the RTOP program to monitor how 

special event traffic control was handled. 

 

Figure 13 Traffic ticker (West Central Region only, all freeways, congestion threshold set at 45 mph) 
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The traffic ticker also allows for the data to be grouped by freeway. Figure 14 shows the breakout of each 

freeway and when there is congestion for each facility and direction. 

 

Figure 14 Traffic ticker (all regions, grouped by freeway & direction, congestion threshold set at 45 mph) 

When only the freeways and directions handled in Tuscaloosa County are shown, the directional 

anomalies and characteristics can be observed for this particular event (Figure 15). 

 

Figure 15 Traffic ticker (WCR only, grouped by freeway & direction, congestion threshold set at 45 mph) 

This insight is, again, especially useful for reviewing management strategies of special events. 
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Delta Speed Map Dashboard 
This delta speed tool is designed to detect areas of speed differential on the interstate system, which 

usually signals a building queue that can lead to dangerous back-of-queue crashes. The delta speed 

between two segments is the difference in speeds between the downstream and upstream segments. If 

this difference is greater than 15 mph, it is shown on the map. Delta speed events are shown as circles 

placed between the two segments. Recent events have a large circle, which gets smaller as the speed 

recovers. The color of the circle points to the severity of the speed drop. The map makes use of 

subsegments where available, to better locate a queue within a TMC segment. One other feature with 

this dashboard is the ability to playback historical data. For all of the HERE speed data stored, this tool is 

able to review historical incidents as shown in the following case study. 

Case Study – The University of Alabama vs Louisiana State University (11/9/19) 

Following the previous case study for the traffic ticker, November 9, 2019 will be used as a case study. 

During this special event day, there was a small spike in congestion on I-20/59 westbound (see Figure 15). 

At 1:56PM, a speed differential occurs. Something happened on I-20/59 westbound where speeds drop 

on a downstream segment and the upstream segment remains high (favorable conditions for queuing and 

secondary crashes). Figure 16 shows where these conditions first occur.  

 

Figure 16 Delta speed playback tool: speed differential occurs 
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Looking at the measured speeds for each of the two segments, the upstream speed is 59.1 mph and the 

downstream speed is 28.2 mph. This speed differential is approximately 31 mph as shown in Figure 17. 

 

Figure 17 Delta speed playback tool: measuring the speed differential 

 

After the next data interval of two minutes, an incident is automatically established for tracking. Figure 

18 shows the speed differential located on the map for tracking as long as the speed differential persists. 

 

Figure 18 Delta speed playback tool: tracking the speed differential 
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For the 1:58 observation, the speed differential is measured to be approximately 43 mph based upon 

the upstream speed of 60.1 mph and downstream speed of 16.8 mph as shown in Figure 19. 

 

Figure 19 Delta speed playback tool: continue tracking and measuring the speed differential 

 

Details of this speed differential incident are stored as shown in Figure 20 and can be reviewed to see 

specific information for more accurate measurements and understanding. 

 

Figure 20 Delta speed playback tool: looking at speed differential detail data 
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FHWA EDC Presentation and Interest 
After reviewing these dashboards with the project advisory committee (PAC) and maintenance bureau, 

this work was presented at an FHWA EDC-5 Vehicle Probe Data Peer Exchange on March 12 in St. Louis, 

MO. The presentation was shared with 11 peer states and very-well received, with follow-up from several 

states. The full presentation is included in the appendix and the highlight from FHWA is shown below in 

Figure 21. 

 

Figure 21 FHWA Newsletter about Alabama Probe Data Work 
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Incident Analysis 
After the dashboards were developed, the data storage procedures were in place to start analyzing each 

incident. One key component was a way to measure the impact of each incident, including the duration 

of the incident, the queuing distance of the incident, and the severity of the drop in speed. A new scoring 

system was used and called the Speed Differential Mile Hours (SDMH). 

Speed Differential Mile Hours 

The SDMH concept was previously described by Hainen, Jones, and Zephaniah. This measure is consistent 
with what other researchers have used (Wang Z. et al., 2018). It is computed using historical speed data 
to estimate the SDMH as defined by Equation 1. 
 

𝑆𝐷𝑀𝐻 = {
∑ ∑ (𝐹𝐹𝑆𝑖−𝑆𝑝𝑒𝑒𝑑𝑚𝑡

)
𝑡𝑓
𝑡𝑖

𝑚𝑓
𝑚𝑖

60
} ∗ 𝑚𝑖𝑙𝑒𝑠                 (1) 

 
Where 𝑚𝑖 and 𝑚𝑓 indicate start and end milepost over a specific segment, 𝑡𝑖  𝑎𝑛𝑑 𝑡𝑓  are the initial and 

end time stamps over a specific duration, and  𝐹𝐹𝑆𝑖  is the free flow speed at road segment 𝑖. The SDMH 
is calculated by analyzing a segment upstream of a crash location following a crash event using six-step 
process described below: 

• Step 1 – collect traffic speed data for the segment where the crash event occured.  

• Step 2 – estimate reduction in free flow speed (per mile per minute ).  

• Step 3 – sum the reduction in free flow speed over time and space (for each minute and 
segment length).  

• Step 4 – divide the reduction in free flow speed per mile per minute by 60 to obtain the 
reduction in speed per mile per hour per segment. 

• Step 5 – sum up the values obtained in Step 3 which gives the speed differential mile minute.  

• Step 6 – divide value obtained in Step 5 by 60 to obtain the SDMH (in hours).  

The methodology discussed above is consistent with shockwave propagation approach for estimating the 
spatiotemporal impact of traffic incidents (Wang Z. et al., 2018) which describes the gradual propagation 
of traffic speed through the shockwaves. To illustrate the process, Figure 1 depicts two typical applications 
of this this process. Figure 1a shows how the process is followed step-by-step to calculate an SDMH of 0.5 
and provides a visual image of the time-space domain. Figure 1b, then illustrates how a more intense 
speed reduction upstream results in a larger SDMH being calculated – in this case and SDMH of 13. 
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Figure 1 Estimation of the SDMH for a crash event 
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SDMH Tool 
With a systematic and qualitative scoring methodology in place, a tool was developed to retrieve this 

information for each incident and crash. This tool is available at the following location: 

https://sdmh.aladata.com/. 

 

 

Figure 22 SDMH tool showing an example incident with an SDMH score of 8101.8 

https://sdmh.aladata.com/
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Modeling Incident Duration and Assessing Incident Clearance Times 
With all the data previously discussed, the final tasks included the modeling of mobility impact from 

incidents and then the interpretation and write-up of model findings. The following work is a paper led by 

N. Islam and A. Hainen which examines the TIMs clearance times for incidents on Alabama freeways. 

Traffic congestion caused by incidents is a major problem in the freeways (Hou, et al., Modeling freeway 

incident response time: A mechanism-based approach, 2013). As the duration of a freeway incident 

increases, it increases the probability of secondary accidents, severity of traffic congestion levels, 

traveler delays, travel time variability, negative social and economic impacts, air pollution and fuel 

consumption (Alkaabi, Dissanayake, & Bird, 2011; Ghosh, Savolainen, & Gates, 2014; Hojati, Ferreiraa, 

Washington, Charles, & Shobeirinejad, 2014). Traffic Management Centers (TMCs) are often tasked with 

monitoring and responding appropriately to minimize the incident duration and to alleviate the impact 

of traffic incidents (Hou, et al., 2014; Ding, Ma, Wang, & Wang, 2015). To achieve this goal, it is 

important for the TMCs to understand the impact of incidents on traffic congestion and the contributing 

factors that effects the incident duration. A better understanding of the influential factors on incident 

duration can help the TMCs in assigning suitable incident management resources to a certain incident. 

Also, operational changes in current incident management procedure can be identified to improve 

incident response and clearance times (Hojati, Ferreiraa, Washington, Charles, & Shobeirinejad, 2014; 

Hou, et al., 2014). 

The Highway Capacity Manual has divided the incident response timeline into four phases. These phases 

include (1) detection time: the time between the incident occurrence and incident reporting time, (2) 

response time: the time between the incident reporting time and the time that the first responder arrives 

on the scene, (3) clearance time: the time between the arrival of the first responder on the scene and the 

moment when the incident has been cleared from the highway, and (4) recovery time: the time taken for 

traffic flow to return to normal after the incident has been cleared (Manual, 1994). These phases are 

illustrated in Figure 23. Among these phases, the incident clearance time is the focus of this paper, as it is 

a critical phase which can be directly controlled by the Traffic Management Centers (TMCs).  

 

Figure 23 Phases of Incident Duration. 
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Over the last few decades, several researchers analyzed incident duration and explored the affecting 

factors using different statistical models. (Nam & Mannering, 2000) used hazard-based duration models 

to analyze the incident duration in terms of detection/reporting time, response time, and clearance time 

by using freeway incident data of Washington State. Their analysis proved that hazard-based duration 

models are appropriate in analyzing incident duration data. The study showed that incident type, day of 

the week, month of the year, weather condition, location of the incident, peak time, and presence of 

shoulder had significant effect on incident duration times. (Alkaabi, Dissanayake, & Bird, 2011) examined 

incident duration by using fully parametric accelerated failure time (AFT) hazard-based duration model by 

using data from the city of Abu Dhabi, UAE. The results of this study showed that various incident 

characteristics significantly affect incident clearance time, including incident type, severity of incident, 

weather condition, location, month of the year, number of vehicles involved and so on. The authors also 

used the fully parametric AFT hazard-based duration models to analyze effect of the influential factor on 

incident response time in their further research work (Alkaabi, Dissanayake, & Bird, 2012). They found 

that incident type, location of the incident, day of the week, and month of the year had significant 

influence on incident response time.  

(Hojati, Ferreira, Washington, & Charles, 2013) explored the effects of various factors related with the 

type of incidents on incident duration. Twelve months of Austrian freeway incident data were analyzed 

by developing parametric accelerated failure time (AFT) survival models for incident duration, which 

included log-logistic, lognormal, fixed and random parameters Weibull and Weibull model with gamma 

heterogeneity. The results showed that incident severity, incident type, towing requirements, location, 

time of day, and traffic characteristics of the incident had significant impact on incident duration. The 

authors expanded their analysis further by using the parametric AFT survival model with fixed and random 

parameters specifications to analyze the unobserved heterogeneity of the incident detection and 

response time (Hojati, Ferreiraa, Washington, Charles, & Shobeirinejad, 2014). The study showed that 

incident characteristics (i.e., severity of the incident, type of the incident), infrastructure characteristics 

(i.e., presence of shoulder), temporal characteristics (i.e., time of the day) and traffic characteristics (i.e., 

peak time) significantly affected the incident detection and response time.  

(Hou, et al., 2013) proposed a mechanism-based approach to model incident response time and to explore 

the influential factors of incident response time based on the performance of the incident response truck 

(IRT). Using the Washington State Incident Tracking System (WITS) data and dual-loop detector data, the 

authors found that injury involved, shoulder/medial involved, heavy truck involved, disabled vehicles 

involved, weekends, and debris were factors associated with longer response time. However, collision, 

work zone involved, HOV lane involved, fire involved, abandoned vehicles involved, all travel lanes 

blocked, winter, summer, AM peak, PM peak, and average annual daily traffic (AADT) were identified to 

shorten incident response time. The authors also developed a non-proportional hazard-based duration 

model to analyze the incident clearance time and the time-varying effects of contributing factors on 

incident clearance time (Hou, et al., 2014). The authors found that five factors (Washington State Patrol 

involved, average annual daily traffic, fire involved, injury involved, and summer) had significant constant 

impact on the incident clearance time. Seven variables (disabled vehicles involved, single lane blocked, 

multiple lanes blocked, collision, short response time, medium response time, and long response time) 
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were found to have significant time-increasing influence and six variables (abandoned vehicles involved, 

heavy truck involved, debris, traffic control, weekends and night time) were observed to have time-

decreasing effects on incident clearance time. 

(Ghosh, Savolainen, & Gates, 2014) examined freeway incident clearance time taken by the Michigan 

Department of Transportation Freeway Courtesy Patrol and the effects of the influential factors by using 

the southeastern Michigan freeway incident duration data. The authors used a series of fully parametric 

hazard-based duration models to explore the factors affecting the freeway incident clearance time. The 

results showed that time of the day, month of the year, seasonal variation, traffic characteristics, 

geometric characteristics, and incident characteristics were significantly impacting the incident clearance 

time. (Ding, Ma, Wang, & Wang, 2015) used a switching regression model and a binary probit model to 

analyze the influential factors in incident response and clearance time. Using the Washington State 

freeway incident data, the authors conclude that incident type, geographical, temporal, environmental, 

operational and traffic characteristics had significant impact on incident response and clearance time. 

Over the course of these studies, freeway incident management programs have become more common 

in managing freeway incidents. Traffic Management Centers (TMCs) have shown their dependency on 

these programs to respond quickly and safely as possible to incidents. Many previous studies had 

identified various factors, including incident types, temporal factors, environmental characteristics, 

infrastructure or geometry of the roadway, traffic condition and operational characteristics, impacting 

incident duration in terms of detection time, response time and clearance time. As for operational 

characteristics, the freeway service patrol area coverage has yet to be examined as an important 

influential factor affecting incident clearance time. In this paper, the existing coverage of the Alabama 

Service and Assistance Patrol (ASAP) program has been considered as an important influential factor on 

freeway incident clearance time.  

Goals and Objectives 
The goal of this paper is to measure and understand the impact of Alabama Service and Assistance Patrol 

(ASAP) on incident clearance time. The objectives of this paper include (1) to pair and analyze TMC 

incident data with crash data, (2) estimate a duration model for incident clearance time, and (3) assess 

the factors that contribute to incident clearance time. This study uses a fully parametric hazard-based 

duration model to statistically analyze the factors that affect the incident clearance time. The novelty of 

this paper is the inclusion of additional ASAP coverage area information in the duration models. The 

contribution of this paper is to provide a better understanding of the factors that contribute to the 

incident clearance time and to provide a quantitative estimate of the impact of ASAP programs. 

Data 
Four different datasets were used to achieve the goal and objectives of this paper. The first dataset 

includes 18,275 highway crashes collected from the Center for Advanced Public Safety (CAPS), an 

interdisciplinary research center at The University of Alabama for the calendar year 2018. The second 

dataset comprises 7,323 highway incidents recorded by Traffic Management Centers (TMCs) for the year 

of 2018. These two datasets were joined using the attributes date, time, road name, direction of travel 

and location, which linked 2,206 crashes and incidents. The third dataset includes the average annual daily 
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traffic (AADT) data for the calendar year 2018 collected from ALDOT. The final dataset contains the 

existing Alabama Service and Assistance Patrol (ASAP) information gathered from ALDOT, which is the key 

attribute in this paper (Figure 24). Each incident was determined whether the location occurred within 

the service patrol region (Figure 25) or not. It should be noted that incidents within the ASAP area may 

not have necessarily had the ASAP arrive to the location first or at all. In the future, additional logs and 

records will further help to understand the impact. 

 

Figure 24 Flowchart of Data Processing. 
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Figure 25 Alabama Service and Assistance Patrol Area Coverage. 
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Methodology 
Considering the large variance in the incident clearance time, a statistical method is warranted to 

understand the duration problem. Hazard-based duration models are statistical models which are well 

suited for modeling duration data. The models are used to analyze the conditional probability of a time 

duration that continued until time t, given that the duration has ended at the time 𝑡 (Washington, 

Karlaftis, & Mannering, 2011). Hazard-based duration models are extensively used in biostatistics, 

economics, engineering, and social sciences for analyzing the duration of a specific event (Hensher & 

Mannering, 1994; Nam & Mannering, 2000; Washington, Karlaftis, & Mannering, 2011). In this paper, a 

hazard-based duration model was used to understand the additional information of the underlying 

duration of incidents. 

In studying incident duration data, the variable of interest is the length of time between the arrival of the 

first responder at the scene and the opening of all lanes, which is defined as the incident clearance time. 

The incident clearance time in hazard-based model is a continuous random variable 𝑇, with a cumulative 

distribution function 𝐹(𝑡), which is called the failure function, probability density function 𝑓(𝑡), survival 

function 𝑆(𝑡), and hazard function ℎ(𝑡). The cumulative distribution function F(t) for the incident clearance 

time (T) is defined in the following equation, where P is the probability that the incident clearance duration 

being greater than some specified time t. 

𝐹(𝑡) = 𝑃(𝑇 < 𝑡)  (1) 

The probability density function f(t), which is the derivative value of the cumulative distribution function 

F(t), is defines as 

𝑓(𝑡) =  
𝑑𝐹(𝑡)

𝑑𝑡
 

(2) 

 

The hazard function h(t) gives the rate at which the incident clearance times are ending at time t, given 

that they have not ended prior to time t (Washington, Karlaftis, & Mannering, 2011). 

ℎ(𝑡) =  
𝑓(𝑡)

1 − 𝐹(𝑡)
 

(3) 

Conversely, the survival function, S(t), is the probability of the duration being greater than or equal to 

some specific time t. 

𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 1 − 𝐹(𝑡)  (4) 

The derivative of h(t) will indicate if the probability of an incident clearance time is increasing, decreasing 

or remain constant as t changes which can depend on the incident types and other attributes of the 

incident. Proportional-hazard model have been popular in accounting for the attributes which are 

influential to the incident clearance time (Washington, Karlaftis, & Mannering, 2011). Therefore, a 

statistical model can be incorporated using the proportional-hazard approach: 
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ℎ(𝑡|𝑋) = ℎ0(𝑡)𝑒𝛽𝑋  (5) 

where ℎ0(𝑡) indicates the baseline hazard function and 𝑒𝛽𝑋  represents the effect of explanatory factors 

on the hazard. X is the vector of external influential factors and β is the vector of estimable parameters. 

In estimating Eq. (5) with fully parametric model, a variety of parametric forms of the underlying hazard 

function can be used, which includes exponential, log-logistic, Weibull, and so on (Nam & Mannering, 

2000; Washington, Karlaftis, & Mannering, 2011). The Weibull distribution allows the hazard function to 

be monotonically increasing or decreasing (indicating the probability of an incident clearance-time 

duration ending increases or decreases over time) (Washington, Karlaftis, & Mannering, 2011; Hainen, 

Remias, Bullock, & Mannering, 2013). With parameters l > 0 and P > 0, the Weibull distribution has the 

hazard function, 

ℎ(𝑡) = (𝜆𝑃)(𝜆𝑡)𝑃−1 (6) 

The original proportional-hazard approach assumes that the baseline hazard function ℎ0(𝑡) is 

homogeneous for each observation. However, there is a possibility of unobserved heterogeneity in 

analyzing the incident clearance time using hazard-based duration model. (Washington, Karlaftis, & 

Mannering, 2011) showed that the most popular approach to examine heterogeneity in fully parametric 

models, is to introduce a heterogeneity term, gamma over the population. Therefore, the Weibull model 

with gamma heterogeneity with mean 1 and variance θ is: 

ℎ(𝑡) =  
(𝜆𝑃)(𝜆𝑡)𝑃−1

1 + 𝜃(𝜆𝑡)𝑃
 

(7) 

In this study, the Weibull model with gamma heterogeneity is used to analyze the incident clearance time 

on 2,206 crashes on Alabama highways. Numeral previous studies have been used this statistical model 

to assess the incident duration data and therefore, is used in this paper for direct comparison. All statistical 

analyses are performed using NLOGIT 5.    

Results 
The parameter estimates of the Weibull model with gamma heterogeneity on highway incident clearance 

time are provided in Table 3. The t-statistic is included in the table to indicate the statistical significance. 

All the variables are statistically significant at 95% level of confidence. The positive value of the parameter 

estimate indicates the decrease in the hazard function and the increase in the incident clearance time. 

Eighty-eight potential independent variables were examined on 2,206 highway incidents, including 

incident types and characteristics, environmental effects, traffic characteristics, operational 

characteristics, temporal effects and geographic characteristics. Seventeen variables are found to have 

significant effect on the duration of the incident clearance time. The effects of such significant variables 

are discussed in detail in the following discussion section and will be compared with previous findings. 
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Table 3 Weibull model with gamma heterogeneity estimation results for incident clearance time 

Variables  
Estimated 
Parameter 

t-statistic  

Constant 3.593 33.97 

    

Incident characteristics   

Fire response (1 if yes, 0 otherwise) 0.196 5.44 

Hazardous materials response (1 if yes, 0 otherwise) 0.917 3.11 
Commercial motor vehicle (CMV) involved (1 if yes, 0 
otherwise) 

0.388 6.77 

Fatality involved (1 if yes, 0 otherwise) 0.689 5.23 

Seat belt involved (1 if yes, 0 otherwise) -0.144 -3.41 
Number of vehicle(s) involved  0.161 6.77 

Vehicle towed (1 if yes, 0 otherwise) 0.373 11.06 
On-road (1 if yes, 0 otherwise) -0.195 -4.30 

Overturn (1 if yes, 0 otherwise) 0.201 2.24 
   

Temporal characteristics   
Nighttime (1 if yes, 0 otherwise) 0.081 2.33 

Winter (December, January, February) 0.073 1.96 
Peak hours (1 if incident occurred between 7 AM – 9 AM 
and 4 PM – 6 PM, 0 otherwise) 

-0.085 -2.74 

   

Traffic characteristics   
Average annual daily traffic (AADT) -0.005 -8.66 

Number of lanes in the trafficway (1 - 6) 0.044 3.91 
   

Operational characteristics   

Detection Time (in minutes) 0.010 2.67 

Police involved (1 if yes, 0 otherwise) 0.264 4.44 
ASAP area (1 if yes, 0 otherwise) -0.218 -5.10 
   

Model structure parameters   

Sigma (distribution parameter) 0.495 37.93 
Theta (heterogeneity) 0.405 8.72 

    

Log-likelihood at convergence -2280.013 - 

Number of observations 2206 - 
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Figure 26 represents various functions for the incident clearance time. The blue solid line indicates the 

survival function for the raw data, whereas the red short-dotted line shows the survival function for the 

estimated model. From Figure 26, it is found that the raw and estimated survival functions are very close 

to each other, indicating that the model fits the data quite well. The green long-dotted line shows the 

estimated hazard function for the incident clearance time. The estimated value of 𝑡 at the inflection point 

is 76 minutes for the hazard function, which indicates that the incident duration is likely to be increased 

after 76 minutes. In other words, the P value greater than one for the hazard function of the analyzed 

incident clearance time suggests that the rate of incident ending decreases after 76 minutes.  

 

Figure 26 Survival and Hazard Functions for Incident Clearance Time. 
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and which should be considered in response plans as parameters that may provide opportunity to reduce 

incident clearance times. 

The variable for commercial motor vehicle involved (CMV) (coef = 0.388. t = 6.77) was found to have a 

positive parameter estimate, which indicates an increase in the incident clearance time. This is expected 

as incidents involved with CMV are complex and often require time-consuming recoveries. If the incident 

is involved with any fatality (coef = 0.689, t= 5.23), it was found to significantly increase the incident 

clearance time. The incidents with fatality tend to be more severe and require more time to document 

and process as the response teams have to work with different agencies such as police and EMS. This 

finding agrees with the many previous research works (Nam & Mannering, 2000; Lee & Fazio, 2005; Chung, 

2010; Alkaabi, Dissanayake, & Bird, 2011). 

The parameter estimate for seat belt (coef = -0.144, t = -3.41) was found to be associated with shorter 

clearance time. Seat belt use tends to reduce the severity of an incident which results shorter clearance 

time (Kashani, Shariat-Mohaymany, & Ranjbari, 2012). The parameter estimate for the number of 

vehicle(s) (coef = 0.161, t = 6.77) was found positive, which indicates that as the number of vehicle(s) 

increases, the duration of clearing the incident also increases. This result is expected as additional vehicles 

involved leads to longer incident clearance time. The variable indicating that a vehicle was towed (coef = 

0.373, t = 11.06) was found to have positive parameter estimate, which indicates an increase in clearance 

time. This finding is consistent with the previous research (Nam & Mannering, 2000; Hojati, Ferreira, 

Washington, & Charles, 2013).  

Incidents occurring on-road (coef = -0.195, t = -4.30) as opposed to the shoulder or off of the roadway 

were found to have a negative parameter estimate, which indicates a decrease in clearance time. The 

incidents occurring on the roadway (as opposed to incidents which ended up outside of the travel lanes) 

is more likely to cause one or more lanes to be closed. Therefore, the traffic incident management 

agencies provide rapid response to these types of incidents to reduce the possibility of more intense 

congestion. The blocking of traffic is more quickly detected and increases the probability of drivers 

reporting the incident. If overturning (coef = 0.201, t = 2.24) of a vehicle occurred in the incident, it was 

found to be associated with longer clearance time. The incidents involving overturned vehicles tend to 

have higher severities and require substantial effort in removal or up-righting of the overturned vehicles. 

The traffic incident management agencies have to work with police and first responder departments, 

which results longer clearance time. 

Temporal characteristics 

The temporal characteristics in the model include the time of the incident (daytime or nighttime), the 

seasonal variations, different peak and off-peak time, day of the week, month of the year, weekdays, 

weekends and so on. If the incident occurred at nighttime (coef = 0.081, t= 2.33), it was found to be 

associated with longer clearance time. This might be because of the lower availability of the response 

team and additional complications with working at night. This result is consistent with the research works 

conducted by (Nam & Mannering, 2000), (Ghosh, Savolainen, & Gates, 2014), but inconsistent with the 

works conducted by (Hou, et al., 2014) and (Ghosh, Savolainen, & Gates, 2014).  
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The incidents which occurred in winter (coef = 0.073, t= 1.96) was found to have positive parameter 

estimate which indicates increased clearance time. This might be because of the inclement weather or 

buildup snow on the shoulder (Ghosh, Savolainen, & Gates, 2014), therefore, it takes more time to clear 

the incident. The peak hours parameter estimate (coef = -0.085, t = -2.74) was found to be associated with 

shorter clearance time. Daily traffic peak hours are important and therefore for the traffic management 

agencies respond to incidents as quickly to alleviate the any additional traffic congestion. This finding 

coincides with the research works conducted by (Alkaabi, Dissanayake, & Bird, 2011; Ding, Ma, Wang, & 

Wang, 2015; Hojati, Ferreiraa, Washington, Charles, & Shobeirinejad, 2014; Hou, et al., Modeling freeway 

incident response time: A mechanism-based approach, 2013; Jones, Janssen, & Mannering, 1991). 

Traffic characteristics 

For traffic characteristics, average annual daily traffic (AADT), truck annual daily traffic (TADT), percent 

truck annual daily traffic (PTADT), number of lanes in the trafficway, etc. were analyzed to measure their 

effects on the incident clearance time. The factor of average annual daily traffic (AADT) (coef = -0.005, t = 

-8.66) was associated with decreased clearance time. The freeways with higher AADT indicates the 

importance of the freeway with higher traffic demand. Therefore, the traffic incident management 

agencies seem to appropriately provide response priority to the freeways with higher AADT to avoid more 

traffic congestion which results shorter incident clearance time. This finding is consistent with many 

previous research works (Jones, Janssen, & Mannering, 1991; Hou, et al., 2013; Ding, Ma, Wang, & Wang, 

2015). The infrastructure characteristic for number of trafficway lanes (coef = 0.044, t = 3.91) was found 

to have positive parameter estimate which indicates increased clearance time. This indicates that if the 

number of lanes in the trafficway increases, it increases the clearance time. More lanes may complicate 

temporary traffic control and therefore takes more time to clear the incident.  

Operational characteristics 

Detection time, verification time, response time, police involvement, and existing Alabama Service and 

Assistance Patrol (ASAP) area were examined to assess the influence of operational characteristics on the 

incident clearance time. As for operational characteristics, the variable for detection time in minutes (coef 

= 0.010, t = 2.67) was found to be associated with longer clearance time. This is expected as any blockage 

causing queuing for a longer time will take more time for the traffic incident management agencies to 

respond to the incident which leads to longer clearance time. The factor for police involved (coef = 0.264, 

t = 4.44) was found to have a positive parameter estimate. This is likely reflecting the nature of police 

responding to relatively severe incidents which would naturally require police attending to the scene. This 

finding is consistent with the research conducted by (Hou, et al., 2014), which showed that police 

involvement tends to increase the clearance time.  

Lastly, the inclusion of the freeway service patrol is a major emphasis and novelty for this work. The 

variable ASAP (coef = -0.21845, t = -5.10) was found to be associated with shorter clearance time. If an 

incident occurs in the ASAP patrol area, the ASAP can quickly detect it. Therefore, the traffic incident 

management agencies get informed fast resulting lower response time, which leads to decreased 

clearance time. This finding is consistent with the research work performed by (Hou, et al., 2014). This is 

very encouraging for the agency freeway service patrol and demonstrates how to appropriately measure 

the effectiveness of these programs. If crashes were analyzed with a simpler approach (for example, a 
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traditional t-test for incidents in the patrol area compared to incidents outside the patrol area), a potential 

omitted variable bias could lead to false conclusions. A holistic model appropriately includes all attributes 

as shown in this work. 

Incident Analysis Conclusions 
In the past, many research efforts have gone into staying incident clearance time. With the increasing use 

of highway service and assistance patrol, this paper is an extension to include additional information 

regarding these programs. This paper describes the analysis of the incident duration data of the state of 

Alabama highways during the period January 1, 2018 to December 31, 2018. Four different datasets were 

collected from CAPS, TMCs and ALDOT including ASAP area coverage information for the highways. A fully 

parametric hazard-based duration model has been analyzed and was demonstrated to be an appropriate 

methodology for this type of data. To address the heterogeneity problem, a Weibull model with gamma 

heterogeneity has been examined. 

In this incident analysis, the model findings indicate that a total of seventeen variables significantly effects 

the incident clearance time. For this study, four groups of conclusions were found.  First, for the incident 

characteristics, seven factors (fire, hazardous materials, commercial motor vehicle, fatality, number of 

driver(s), vehicle towed, and overturn) are found to be significantly associated with longer incident 

clearance time. Meanwhile, two variables (seat belt and on-road) tend to decrease the incident clearance 

time. Second, for the temporal group, both the variables (night and winter) are found to significantly 

influence the longer incident clearance time. Third, two factors (AADT and peak hour) in the traffic group, 

are identified to be significantly associated with shorter incident clearance time, whereas only one factor 

(number of lanes) is captured to responsible for longer clearance time. Fourth, for the operational 

characteristics, the two factors (detection time and police involvement) are found to be associated with 

longer clearance time. The only variable (ASAP) tends to significantly decrease the incident clearance time. 

It should be encouraging this point to see the beneficial impacts of Alabama’s Highway Service and 

Assistance Patrol coverage. A next step should be to explore similar analyses in other states, perhaps with 

additional or alternative modelling frameworks. Also, changes with spatial coverage, operational hours, 

and/or the size and quantity of crews should be monitored and examined over time.  
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Project Conclusions 
Crowdsourced probe data is rapidly becoming a viable dataset for a variety of transportation applications. 

Improvements over the traditional TMC 5-minute records continue to develop in the ways of shorter 

segments, travel patterns, and signal analytics. In the distant future, connected vehicle data will provide 

completely disaggregated probe data. For now, this data is a highly-scalable dataset that will help 

operators understand and assess how their systems are working. 

For this project, an initial set of dashboards was developed. With data collection, storage, and retrieval 

procedures in place, additional dashboards could be developed according to agency needs and interests. 

As more data becomes available, combining datasets to gain more insight will help to provide further 

insights about travel patterns and operations. A few challenges certainly exist with combining 

information. First, the conflation process to combine data is extremely challenging. Whether the data 

needs to be combined in a GIS platform or through other linkages, this process is tedious and requires a 

high level of error checking. Once the data is combined, analyzing the data also requires careful 

approaches. Simply filtering incidents or crashes or other observations on a single variable (e.g. urban vs. 

rural or night vs. day) is insufficient compared to developing appropriate models. Storing the data is also 

quite challenging, both with the collection processes and the database size and management. 

While all of these challenges were successfully mitigated in this research project, there are commercial 

products which may be better alternatives. The Iteris ClearGuide platform has much promise. The 

University of Maryland’s / CATT Lab’s RITIS platform is certainly a mature product. The maintenance 

bureau has been investigating these alternatives, and further exploration should be continued. The 

tradeoff between customized research project-oriented dashboards or more widely-available offerings 

from vendors will be an involved decision to make. 

In the future, while additional transportation systems hardware will continue to be deployed, 

commercially available crowdsourced probe data will certainly augment any analyses or reports. The crash 

data and RTMC incident data will be key in providing independent variables to understand each incident 

on the roadways. Ultimately, combining all of this data with volume data to quantify the costs to travelers 

will help with benefit-cost ratios for programmatic and operational decisions.  
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Appendix A – Slides from FHWA EDC-5 Vehicle Probe Data Peer Exchange 

 

 

 



44 
 

 

 

 



45 
 

 

 

 

 



46 
 

 

 

 

 



47 
 

 

 

 

 



48 
 

 

 

 

 



49 
 

 

 

 

 



50 
 

 

 

 

 



51 
 

 

 

 

 



52 
 

 

 

 

 



53 
 

 

 

 

 



54 
 

 

 

 

 



55 
 

 

 

 

 



56 
 

 

 

 

 



57 
 

 

 

 

 



58 
 

 

 

 

 



59 
 

 

 

 

 



60 
 

 

 

 

 



61 
 

 

 

 

 



62 
 

 

 

 

 



63 
 

 

 

 

 



64 
 

 

 

 

 



65 
 

 

 

 

 



66 
 

 

 

 

 



67 
 

 

 

 

 



68 
 

 

 

 

 



69 
 

 

 

 

 



70 
 

 

 

 

 



71 
 

 

 

 


	Structure Bookmarks
	Using AlgoTraffic Data to Improve





Accessibility Report





		Filename: 

		Using AlgoTraffic Data to Improve Traffic Incident Management._REM.pdf









		Report created by: 

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov



		Organization: 

		DOT, NTL







 [Personal and organization information from the Preferences > Identity dialog.]



Summary



The checker found problems which may prevent the document from being fully accessible.





		Needs manual check: 0



		Passed manually: 2



		Failed manually: 0



		Skipped: 0



		Passed: 28



		Failed: 2







Detailed Report





		Document





		Rule Name		Status		Description



		Accessibility permission flag		Passed		Accessibility permission flag must be set



		Image-only PDF		Passed		Document is not image-only PDF



		Tagged PDF		Passed		Document is tagged PDF



		Logical Reading Order		Passed manually		Document structure provides a logical reading order



		Primary language		Passed		Text language is specified



		Title		Passed		Document title is showing in title bar



		Bookmarks		Passed		Bookmarks are present in large documents



		Color contrast		Passed manually		Document has appropriate color contrast



		Page Content





		Rule Name		Status		Description



		Tagged content		Passed		All page content is tagged



		Tagged annotations		Passed		All annotations are tagged



		Tab order		Passed		Tab order is consistent with structure order



		Character encoding		Passed		Reliable character encoding is provided



		Tagged multimedia		Passed		All multimedia objects are tagged



		Screen flicker		Passed		Page will not cause screen flicker



		Scripts		Passed		No inaccessible scripts



		Timed responses		Passed		Page does not require timed responses



		Navigation links		Passed		Navigation links are not repetitive



		Forms





		Rule Name		Status		Description



		Tagged form fields		Passed		All form fields are tagged



		Field descriptions		Passed		All form fields have description



		Alternate Text





		Rule Name		Status		Description



		Figures alternate text		Failed		Figures require alternate text



		Nested alternate text		Passed		Alternate text that will never be read



		Associated with content		Passed		Alternate text must be associated with some content



		Hides annotation		Passed		Alternate text should not hide annotation



		Other elements alternate text		Passed		Other elements that require alternate text



		Tables





		Rule Name		Status		Description



		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot



		TH and TD		Passed		TH and TD must be children of TR



		Headers		Passed		Tables should have headers



		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column



		Summary		Failed		Tables must have a summary



		Lists





		Rule Name		Status		Description



		List items		Passed		LI must be a child of L



		Lbl and LBody		Passed		Lbl and LBody must be children of LI



		Headings





		Rule Name		Status		Description



		Appropriate nesting		Passed		Appropriate nesting










Back to Top

